COVID - Epidemiology

By Dr Deepu Changappa Cheriamane

Epidemiology
As of July 2020, the number of cases of confirmed COVID-19 globally is over 11 million affecting virtually every territory, other than isolated South Pacific island states and Antarctica, according to an online virus tracker created by the medical journal, The Lancet, and hosted by Johns Hopkins University. As of June 2020, the United States had more than two million cases, Brazil more than one million, with Russia and India with >500,000 cases. 


The R0 (basic reproduction number) of SARS-CoV-2 has been estimated between 2.2 and 3.28 in a non-lockdown population, that is each infected individual, on average, causes between 2-3 new infections. 
The incubation period for COVID-19 was initially calculated to be about five days, which was based on 10 patients only. An American group performed an epidemiological analysis of 181 cases, for which days of exposure and symptom onset could be estimated accurately. They calculated a median incubation period of 5.1 days, that 97.5% became symptomatic within 11.5 days (CI 8.2 to 15.6 days) of being infected, and that extending the cohort to the 99th percentile results in almost all cases developing symptoms in 14 days after exposure to SARS-CoV-2.
As of June 2020 the number of deaths from COVID-19 passed half a million globally. The case fatality rate is ~2-3%. It is speculated that the true case fatality rate is lower than this because many mild/asymptomatic cases are not being tested, which thus skews the apparent death rate upwards.
A paper published by the Chinese Center for Disease Control and Prevention (CCDC) analyzed all 44,672 cases diagnosed up to 11 February 2020. Of these, ~1% were asymptomatic, and ~80% were classed as "mild". 
Another study looked at clinical characteristics in COVID-19 positively tested close contacts of COVID-19 patients. Approximately 30% of those COVID-19 positive close contacts never developed any symptoms or changes on chest CT scans. The remainder showed changes in CT, but ~20% reportedly developed symptoms during their hospital course, none of them developed severe disease. This suggests that a high percentage of COVID-19 carriers are asymptomatic.
In the Chinese population, 55-60%% of COVID-19 patients were male; the median age has been reported between 47 and 59 years.
Pediatric
Children seem to be relatively unaffected by this virus, or indeed other closely-related coronaviruses.with large cohort studies reporting that 1-2% of COVID-19 patients are children. However, there have been cases of critically-ill children with infants under 12 months likely to be more seriously affected. A very low number of pediatric deaths has been reported . In children, male gender does not seem to be a risk factor. The incubation period has been reported to be shorter than in adults, at about two days.
Read..

Terminology

By Dr Deepu Changappa Cheriamane

The World Health Organization originally called this illness "novel coronavirus-infected pneumonia (NCIP)", and the virus itself had been provisionally named "2019 novel coronavirus (2019-nCoV)" .
On 11 February 2020, the WHO officially renamed the clinical condition COVID-19 (a shortening of COronaVIrus Disease-19) 15. Coincidentally, on the same day, the Coronavirus Study Group of the International Committee on Taxonomy of Viruses renamed the virus "severe acute respiratory syndrome coronavirus 2" (SARS-CoV-2). The names of both the disease and the virus should be fully capitalized, except for the 'o' in the viral name, which is in lowercase. 
The official virus name is similar to SARS-CoV-1, the virus strain that caused epidemic severe acute respiratory syndrome (SARS) in 2002-2004, potentially causing confusion 38. The WHO has stated it will use "COVID-19 virus" or the "virus that causes COVID-19" instead of its official name, SARS-CoV-2 when communicating with the public.

Read more...

COVID 19

By Dr Deepu Changappa Cheriamane

Introduction

COVID-19 (coronavirus disease 2019) is an infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a strain of coronavirus. The first cases were seen in Wuhan, China, in December 2019 before spreading globally, with more than 11 million cases now confirmed. The current outbreak was officially recognized as a pandemic by the World Health Organization (WHO) on 11 March 2020.


Bandana Face Covering (no sew method) Materials

By Dr Deepu


Bandana (or square cotton cloth approximately 20”x20”)
Rubber bands (or hair ties)
Scissors (if you are cutting your own cloth)
Tutorial






Quick Cut T-shirt Face Covering (no sew method)

By Dr Deepu

Materials
T-shirt
Scissors
Tutorial




Learn 
1. How to make see mask
2. How to make bandana Mask


Sewn Cloth Face Covering

By Dr Deepu

Materials
Two 10”x6” rectangles of cotton fabric
Two 6” pieces of elastic (or rubber bands, string, cloth strips, or hair ties)
Needle and thread (or bobby pin)
Scissors
Sewing machine
Tutorial
1. Cut out two 10-by-6-inch rectangles of cotton fabric. Use tightly woven cotton, such as quilting fabric or cotton sheets. T-shirt fabric will work in a pinch. Stack the two rectangles; you will sew the mask as if it was a single piece of fabric.


2. Fold over the long sides ¼ inch and hem. Then fold the double layer of fabric over ½ inch along the short sides and stitch down.


3. Run a 6-inch length of 1/8-inch wide elastic through the wider hem on each side of the mask. These will be the ear loops. Use a large needle or a bobby pin to thread it through. Tie the ends tight.
Don’t have elastic? Use hair ties or elastic head bands. If you only have string, you can make the ties longer and tie the mask behind your head.



4. Gently pull on the elastic so that the knots are tucked inside the hem. Gather the sides of the mask on the elastic and adjust so the mask fits your face. Then securely stitch the elastic in place to keep it from slipping.
Learn how to make non sewn face mask in next post

How to Wear a Cloth Face Covering

By Dr Deepu


Cloth face coverings should—
  • fit snugly but comfortably against the side of the face
  • be secured with ties or ear loops
  • include multiple layers of fabric
  • allow for breathing without restriction
  • be able to be laundered and machine dried without damage or change to shape
CDC recommends wearing cloth face coverings in public settings where other social distancing measures are difficult to maintain (e.g., grocery stores and pharmacies), especially in areas of significant community-based transmission.
CDC also advises the use of simple cloth face coverings to slow the spread of the virus and help people who may have the virus and do not know it from transmitting it to others.  Cloth face coverings fashioned from household items or made at home from common materials at low cost can be used as an additional, voluntary public health measure.

Cloth face coverings should not be placed on young children under age 2, anyone who has trouble breathing, or is unconscious, incapacitated or otherwise unable to remove the mask without assistance.
The cloth face coverings recommended are not surgical masks or N-95 respirators.  Those are critical supplies that must continue to be reserved for healthcare workers and other medical first responders, as recommended by current CDC guidance.

Should cloth face coverings be washed or otherwise cleaned regularly? How regularly?
Yes. They should be routinely washed depending on the frequency of use.

How does one safely sterilize/clean a cloth face covering?
A washing machine should suffice in properly washing a face covering.

How does one safely remove a used cloth face covering?
Individuals should be careful not to touch their eyes, nose, and mouth when removing their face covering and wash hands immediately after removing.


Read the next article on how to prepare face mask at home

Hopes raise as new data released on hydroxychloroquine treatment for COVID-19.

By Dr Deepu

The new study, of which the abstract was released today, was performed at IHU Méditerranée Infection, Marseille, France. A cohort of 1061 COVID-19 patients, treated for at least 3 days with the Hydroxychloroquine-Azithromycin (HCQ-AZ) combination and a follow-up of at least 9 days was investigated.
Key findings are:
No cardiac toxicity was observed.
A good clinical outcome and virological cure was obtained in 973 patients within 10 days (91.7%).
A poor outcome was observed for 46 patients (4.3%); 10 were transferred to intensive care units, 5 patients died (0.47%) (74-95 years old) and 31 required 10 days of hospitalization or more.
The authors conclude that:
“The HCQ-AZ combination, when started immediately after diagnosis, is a safe and efficient treatment for COVID-19, with a mortality rate of 0.5%, in elderly patients. It avoids worsening and clears virus persistence and contagiosity in most cases.”

ABSTRACT
Background
In a recent survey, most physicians worldwide considered that hydroxychloroquine (HCQ) and azithromycin (AZ) are the two most effective drugs among available molecules against COVID-19. Nevertheless, to date, one preliminary clinical trial only has demonstrated its efficacy on the viral load. Additionally, a clinical study including 80 patients was published, and in vitro efficiency of this association was demonstrated.
Methods
The study was performed at IHU Méditerranée Infection, Marseille, France. A cohort of 1061 COVID-19 patients, treated for at least 3 days with the HCQ-AZ combination and a follow-up of at least 9 days was investigated. Endpoints were death, worsening and viral shedding persistence.
Findings
From March 3rd to April 9th, 2020, 59,655 specimens from 38,617 patients were tested for COVID-19 by PCR. Of the 3,165 positive patients placed in the care of our institute, 1061 previously unpublished patients met our inclusion criteria. Their mean age was 43.6 years old and 492 were male (46.4%). No cardiac toxicity was observed. A good clinical outcome and virological cure was obtained in 973 patients within 10 days (91.7%). Prolonged viral carriage at completion of treatment was observed in 47 patients (4.4%) and was associated to a higher viral load at diagnosis (p <1/100) but viral culture was negative at day 10 and all but one were PCR-cleared at day 5. A poor outcome was observed for 46 patients (4.3%); 10 were transferred to intensive care units, 5 patients died (0.47%) (74-95 years old) and 31 required 10 days of hospitalization or more. Among this group, 25 patients are now cured and 16 are still hospitalized (98% of patients cured so far). Poor clinical outcome was significantly associated to older age (OR 1.11), initial higher severity (OR 10.05) and low hydroxychloroquine serum concentration. In addition, both poor clinical and virological outcomes were associated to the use of selective beta-blocking agents and angiotensin II receptor blockers (P<0.05). Mortality was significantly lower in patients who had received > 3 days of HCQ-AZ than in patients treated with other regimens both at IHU and in all Marseille public hospitals (p< 1/100).
Interpretation
The HCQ-AZ combination, when started immediately after diagnosis, is a safe and efficient treatment for COVID-19, with a mortality rate of 0.5%, in elderly patients. It avoids worsening and clears virus persistence and contagiosity in most cases.



https://www.mediterranee-infection.com/pre-prints-ihu/

When and how to wear medical masks to protect against coronavirus

By Dr Deepu



Before putting on a mask, clean hands with alcohol-based hand rub or soap and water.
Cover mouth and nose with mask and make sure there are no gaps between your face and the mask.
Avoid touching the mask while using it; if you do, clean your hands with alcohol-based hand rub or soap and water.
Replace the mask with a new one as soon as it is damp and do not re-use single-use masks.
To remove the mask: remove it from behind (do not touch the front of mask); discard immediately in a closed bin; clean hands with alcohol-based hand rub or soap and water.

COVID -19 update

By Dr Deepu


WHAT IS COVID-19?

Coronaviruses (CoV) are a large family of viruses that cause illness ranging from the common cold to more serious diseases such as Severe Acute Respiratory Syndrome (SARS-CoV).
The 2019 novel coronavirus is a new strain that has not been seen in humans until now and has caused viral pneumonia. It was first linked to Wuhan’s South China Seafood City market which is a wholesale market for seafood and live animals in December 2019.
The virus has now been detected in several areas throughout China, along with countries across Asia, North and South America, Europe, Africa and Oceana.

WHAT DO THE DIFFERENT NAMES MEAN?

You may have noticed different names circulating which relate to the novel corona virus. Below we have listed some of the more common names and explained what they mean.
COVID-19- this is the name for the disease caused by the coronavirus. This is simply short for coronavirus disease 2019. The World Health Organization announced this name on the 11 February 2020.
SARS-CoV-2- severe acute respiratory syndrome-related coronavirus 2. This is the name of the virus, not the disease that results from it. The world Health Organization emphasizes that while the viruses are related, COVID-19 is different from the SARS outbreak of 2003.
Novel corona virus 2019 (nCoV-19)- this was initially used at the start of the outbreak. It refers to the virus which is a novel form of the coronavirus that was first seen in 2019.
Coronavirus- you may see or hear about the virus referred to just as the coronavirus. This is not inaccurate as it is a novel strain of a coronavirus.

SYMPTOMS

The World Health Organization (WHO) advises that the most common symptoms of COVID-19 are fever, tiredness, and dry cough. Some people may experience aches and pains, nasal congestion, runny nose, sore throat or diarrhea. These symptoms are usually mild and begin gradually.
People with pre-existing medical conditions (such as asthma and COPD) are more likely to become severely ill with the virus.

WHAT CAN I DO TO LIMIT MY RISK OF CATCHING COVID-19?

  • Do not touch your mouth, nose or eyes with unwashed hands
  • Try to avoid contact with people who are sick
  • Cover your coughs and sneezes with a tissue and throw it in a bin and
  • Wash your hands thoroughly after touching surfaces that may be contaminated

PROPER HAND WASHING TECHNIQUE

  • Wet your hands under running water
  • apply soap
  • rub hands together vigorously for at least 20 seconds.
  • make sure you apply soap to all parts of your hands including the backs, between your fingers, fingertips, around and under your nails, thumbs and wrists
  • thoroughly rinse your hands under running water
  • turn off the tap with a paper towel to avoid recontaminating your hands and
  • dry your hands with a disposable paper towel or hand dryer (do not touch the hand dryer).

PROPER ALCOHOL GEL (HAND SANITIZER) TECHNIQUE

  • Apply one to two squirts of hand sanitizer to your hands
  • rub all over your hands including: the backs, between your fingers, fingertips, around and under your nails, thumbs and wrists and
  • allow the hand sanitizer to dry. This takes about 20-30 seconds.

SHOULD I BE WORRIED ABOUT TRAVELLING?

Due to the changing nature of travel restrictions, please refer to the World Health Organization for updates.
As symptoms include fever and difficulty breathing, you are advised to speak with a doctor and to make them aware of your travel history if you experience these during or after travel.
Exit screening at international airports and ports in the affected areas may take place to prevent the disease from spreading.

Severe COVID-19 risk could be increased in people with COPD and smokers

By Dr Deepu

People with chronic obstructive pulmonary disease (COPD) and people who currently smoke may have higher levels of a molecule, called angiotensin converting enzyme II (ACE-2), in their lungs according to a study published in the European Respiratory Journal (ERJ).

Previous research shows that ACE-2, which sits on the surface of lung cells, is the ‘entry point’ that allows coronavirus to get into the cells of the lungs and cause an infection.

The new study also shows that levels of ACE-2 in former smokers is lower than in current smokers.

The research was led by Dr Janice Leung at the University of British Columbia and St. Paul’s Hospital, Vancouver, Canada. She said: “The data emerging from China suggested that patients with COPD were at higher risk of having worse outcomes from COVID-19. We hypothesised that this could be because the levels of ACE-2 in their airways might be increased compared to people without COPD, which could possibly make it easier for the virus to infect the airway.”

The team studied samples taken from the lungs of 21 COPD patients and 21 people who did not have COPD. They tested the samples to gauge the level of ACE-2 and compared this with other factors, such whether they were from people who never smoked, were current smokers or former smokers. Not only did they find higher levels of ACE-2 in COPD patients, they also found higher levels in people who were smokers.

The researchers then checked their new findings against two existing study groups, which together contain data on a further 249 people – some non-smokers, some current smokers and some former smokers. Again, they found levels of ACE-2 were higher in current smokers but lower in non-smokers and in those who were former smokers.

Dr Leung said: “We found that patients with COPD and people who are still smoking have higher levels of ACE-2 in their airways, which might put them at an increased risk of developing severe COVID-19 infections. Patients with COPD should be counselled to strictly abide by social distancing and proper hand hygiene to prevent infection.

“We also found that former smokers had similar levels of ACE-2 to people who had never smoked. This suggests that there has never been a better time to quit smoking to protect yourself from COVID-19.”

HRCT findings in various ILDs

By Dr Deepu
Here is an easy pictorial representation of the various ILD.

Anti-malondialdehyde-acetaldehyde adducts antibodies in lung tissues may play important role in pathogenesis of RA-associated interstitial lung disease, study indicates

By Dr Deepu

Anti-malondialdehyde-acetaldehyde adducts (MAA) antibodies and MAA expression in lung tissues of patients with rheumatoid arthritis-associated interstitial lung disease (RA-ILD) likely play an important role in RA-ILD pathogenesis, and anti-MAA antibodies may function well as serum biomarkers in the identification of this disease manifestation.
Patients with RA face premature mortality and RA-ILD is a major determinant of worse long-term outcomes, with a median survival as short as 3 years after diagnosis. In the present study, researchers compared serum anti-MAA antibodies and MAA expression in lung tissues of patients from 13 sites fulfilling the 1987 American College of Rheumatology criteria by selecting participants from the Veterans Affairs Rheumatoid Arthritis Registry.
Multivariable logistic regression models were used to assess the association between anti-MAA antibodies (immunoglobulins A, M, and G [IgA, IgM, IgG]) and RA-ILD status by combining RA alone with RA+chronic obstructive pulmonary disease (COPD) for a comparator group, as unadjusted comparisons found no significant differences in concentrations of anti-MAA antibodies between these groups. Lung tissues from RA-ILD patients, and other patients with ILD, emphysema, and controls were stained for MAA, macrophages (CD68), citrulline, B cells (CD19/CD27), T cells (CD3), and extracellular matrix proteins (fibronectin, vimentin, type-II collagen). Lung tissue expression and MAA co-localization were quantified and compared.
Among the total 1823 participants with RA, 90 had RA-ILD. Higher serum concentrations of IgM and IgA anti-MAA antibodies were seen in RA-ILD vs RA+COPD or RA alone (P =.005). After adjustment for covariates, the highest quartiles of IgM (odds ratio [OR] 2.23; 95% CI, 1.19-4.15) and IgA (OR 2.09; 95% CI, 1.11-3.90) anti-MAA antibody were significantly associated with RA-ILD. MAA expression in lung tissue was greater in RA-ILD than all other groups (P  <.001). The RA-ILD group also showed the greatest degree of MAA co-localized with CD19+ B cells (r =0.78), citrulline (r =0.79), and extracellular matrix proteins (type-II collagen [r =0.72] and vimentin [r =0.77]).
The study authors concluded the study by noting "These findings suggest that MAA immune responses could play an important role in the pathogenesis of RA-ILD and anti-MAA antibodies may be promising serum biomarkers in the identification of this extra-articular disease manifestation"
The finding were published in arthritis and rheumatology