Showing posts with label NOTES. Show all posts
Showing posts with label NOTES. Show all posts

Treatment Option Overview for NSCLC

Treatment Option Overview for NSCLC



·        
In NSCLC, results of standard treatment are poor except for the most localized cancers. All newly diagnosed patients with NSCLC are potential candidates for studies evaluating new forms of treatment.
Surgery is the most potentially curative therapeutic option for this disease. Postoperative chemotherapy may provide an additional benefit to patients with resected NSCLC. Radiation therapy combined with chemotherapy can produce a cure in a small number of patients and can provide palliation in most patients. Prophylactic cranial irradiation (PCI) may reduce the incidence of brain metastases, but there is no evidence of a survival benefit and the effect of PCI on quality of life is not known.[1,2] In patients with advanced-stage disease, chemotherapy or epidermal growth factor receptor (EGFR) kinase inhibitors offer modest improvements in median survival, though overall survival is poor.[3,4]
Chemotherapy has produced short-term improvement in disease-related symptoms in patients with advanced NSCLC. Several clinical trials have attempted to assess the impact of chemotherapy on tumor-related symptoms and quality of life. In total, these studies suggest that tumor-related symptoms may be controlled by chemotherapy without adversely affecting overall quality of life;[5,6] however, the impact of chemotherapy on quality of life requires more study. In general, medically fit elderly patients with good performance status obtain the same benefits from treatment as younger patients.
The identification of mutations in lung cancer has led to the development of molecularly targeted therapy to improve the survival of subsets of patients with metastatic disease.[7] In particular, genetic abnormalities in EGFR, MAPK, PI3K signaling pathways in subsets of NSCLC may define mechanisms of drug sensitivity and primary or acquired resistance to kinase inhibitors. EGFR mutations strongly predict the improved response rate and progression-free survival of inhibitors of EGFR. Fusions ofALK with EML4 genes form translocation products that occur in ranges from 3% to 7% in unselected NSCLC and are responsive to pharmacological inhibition of ALK by agents such as crizotinib. METoncogene encodes hepatocyte growth factor receptor. Amplification of this gene has been associated with secondary resistance to EGFR tyrosine kinase inhibitors.
The standard treatment options for each stage of NSCLC are presented in Table 11.
Table 11. Standard Treatment Options for NSCLC
Stage (TNM Staging Criteria)
Standard Treatment Options
Occult NSCLC
Surgery
Stage 0 NSCLC
Surgery
Endobronchial therapies
Stages IA and IB NSCLC
Surgery
Radiation therapy
Stages IIA and IIB NSCLC
Surgery
Neoadjuvant chemotherapy
Adjuvant chemotherapy
Radiation therapy
Stage IIIA NSCLC
Resected or resectable disease
Surgery
Neoadjuvant therapy
Adjuvant therapy
Unresectable disease
Radiation therapy
Chemoradiation therapy
Superior sulcus tumors
Radiation therapy alone
Radiation therapy and surgery
Concurrent chemotherapy with radiation therapy and surgery
Surgery alone (for selected patients)
Tumors that invade the chest wall
Surgery
Surgery and radiation therapy
Radiation therapy alone
Chemotherapy combined with radiation therapy and/or surgery
Stage IIIB NSCLC
Sequential or concurrent chemotherapy and radiation therapy
Chemotherapy followed by surgery (for selected patients)
Radiation therapy alone
Stage IV NSCLC
Cytotoxic combination chemotherapy (first line)
Combination chemotherapy with bevacizumab or cetuximab
EGFR tyrosine kinase inhibitors (first line)
EML4-ALK inhibitors in patients with EML-ALK translocations
Maintenance therapy following first-line chemotherapy
Endobronchial laser therapy and/or brachytherapy (for obstructing lesions)
External-beam radiation therapy (primarily for palliation of local symptomatic tumor growth)
Recurrent NSCLC
Radiation therapy (for palliation)
Chemotherapy or kinase inhibitors alone
EGFR inhibitors in patients with/without EGFR mutations
EML4-ALK inhibitors in patients with EML-ALK translocations
Surgical resection of isolated cerebral metastasis (for highly selected patients)
Laser therapy or interstitial radiation therapy (for endobronchial lesions)
Stereotactic radiation surgery (for highly selected patients)
In addition to the standard treatment options presented in Table 11, treatment options under clinical evaluation include the following:
·         Combining local treatment (surgery).
·         Regional treatment (radiation therapy).
·         Systemic treatments (chemotherapy, immunotherapy, and targeted agents).
·         Developing more effective systemic therapy.

Follow-Up

Several small series have reported that reduction in fluorodeoxyglucose-positron emission tomography (FDG-PET) after chemotherapy, radiation therapy, or chemoradiation therapy correlates with pathological complete response and favorable prognosis.[8-15] Studies have used different timing of assessments, FDG-PET parameters, and cutpoints to define FDG-PET response. Reduction in maximum standardized uptake value (SUV) of more than 80% predicted for complete pathological response with a sensitivity of 90%, specificity of 100%, and accuracy of 96%.[16] Median survival after resection was greater for patients with tumor SUV values of less than 4 (56 mo vs. 19 mo).[15] Patients with complete metabolic response following radiation therapy were reported to have median survivals of 31 months versus 11 months.[17]
FDG-PET may be more sensitive and specific than computed tomography scan in assessing response to induction therapy. Optimal timing imaging remains to be defined; however, one study suggests that greater sensitivity and specificity of FDG-PET is achieved if repeat imaging is delayed until 30 days after radiation therapy.[16]

Current Clinical Trials

Check for U.S. clinical trials from NCI's list of cancer clinical trials that are now accepting patients withnon-small cell lung cancer. The list of clinical trials can be further narrowed by location, drug, intervention, and other criteria.
General information about clinical trials is also available from the NCI Web site.

References

  1. Lester JF, MacBeth FR, Coles B: Prophylactic cranial irradiation for preventing brain metastases in patients undergoing radical treatment for non-small-cell lung cancer: a Cochrane Review. Int J Radiat Oncol Biol Phys 63 (3): 690-4, 2005. [PUBMED Abstract]
  2. Pöttgen C, Eberhardt W, Grannass A, et al.: Prophylactic cranial irradiation in operable stage IIIA non small-cell lung cancer treated with neoadjuvant chemoradiotherapy: results from a German multicenter randomized trial. J Clin Oncol 25 (31): 4987-92, 2007. [PUBMED Abstract]
  3. Chemotherapy for non-small cell lung cancer. Non-small Cell Lung Cancer Collaborative Group. Cochrane Database Syst Rev (2): CD002139, 2000. [PUBMED Abstract]
  4. Chemotherapy in non-small cell lung cancer: a meta-analysis using updated data on individual patients from 52 randomised clinical trials. Non-small Cell Lung Cancer Collaborative Group. BMJ 311 (7010): 899-909, 1995. [PUBMED Abstract]
  5. Spiro SG, Rudd RM, Souhami RL, et al.: Chemotherapy versus supportive care in advanced non-small cell lung cancer: improved survival without detriment to quality of life. Thorax 59 (10): 828-36, 2004. [PUBMED Abstract]
  6. Clegg A, Scott DA, Hewitson P, et al.: Clinical and cost effectiveness of paclitaxel, docetaxel, gemcitabine, and vinorelbine in non-small cell lung cancer: a systematic review. Thorax 57 (1): 20-8, 2002. [PUBMED Abstract]
  7. Pao W, Girard N: New driver mutations in non-small-cell lung cancer. Lancet Oncol 12 (2): 175-80, 2011. [PUBMED Abstract]
  8. Curran WJ, Scott CB, Langer CJ, et al.: Long-term benefit is observed in a phase III comparison of sequential vs concurrent chemo-radiation for patients with unresected stage III nsclc: RTOG 9410. [Abstract] Proceedings of the American Society of Clinical Oncology 22: A-2499, 2003.
  9. Fournel P, Robinet G, Thomas P, et al.: Randomized phase III trial of sequential chemoradiotherapy compared with concurrent chemoradiotherapy in locally advanced non-small-cell lung cancer: Groupe Lyon-Saint-Etienne d'Oncologie Thoracique-Groupe Français de Pneumo-Cancérologie NPC 95-01 Study. J Clin Oncol 23 (25): 5910-7, 2005. [PUBMED Abstract]
  10. Zatloukal P, Petruzelka L, Zemanova M, et al.: Concurrent versus sequential chemoradiotherapy with cisplatin and vinorelbine in locally advanced non-small cell lung cancer: a randomized study. Lung Cancer 46 (1): 87-98, 2004. [PUBMED Abstract]
  11. Rowell NP, O'rourke NP: Concurrent chemoradiotherapy in non-small cell lung cancer. Cochrane Database Syst Rev (4): CD002140, 2004. [PUBMED Abstract]
  12. Cerfolio RJ, Bryant AS, Winokur TS, et al.: Repeat FDG-PET after neoadjuvant therapy is a predictor of pathologic response in patients with non-small cell lung cancer. Ann Thorac Surg 78 (6): 1903-9; discussion 1909, 2004. [PUBMED Abstract]
  13. Pöttgen C, Levegrün S, Theegarten D, et al.: Value of 18F-fluoro-2-deoxy-D-glucose-positron emission tomography/computed tomography in non-small-cell lung cancer for prediction of pathologic response and times to relapse after neoadjuvant chemoradiotherapy. Clin Cancer Res 12 (1): 97-106, 2006. [PUBMED Abstract]
  14. Eschmann SM, Friedel G, Paulsen F, et al.: 18F-FDG PET for assessment of therapy response and preoperative re-evaluation after neoadjuvant radio-chemotherapy in stage III non-small cell lung cancer. Eur J Nucl Med Mol Imaging 34 (4): 463-71, 2007. [PUBMED Abstract]
  15. Hellwig D, Graeter TP, Ukena D, et al.: Value of F-18-fluorodeoxyglucose positron emission tomography after induction therapy of locally advanced bronchogenic carcinoma. J Thorac Cardiovasc Surg 128 (6): 892-9, 2004. [PUBMED Abstract]
  16. Cerfolio RJ, Bryant AS: When is it best to repeat a 2-fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography scan on patients with non-small cell lung cancer who have received neoadjuvant chemoradiotherapy? Ann Thorac Surg 84 (4): 1092-7, 2007. [PUBMED Abstract]
  17. Mac Manus MP, Hicks RJ, Matthews JP, et al.: Positron emission tomography is superior to computed tomography scanning for response-assessment after radical radiotherapy or chemoradiotherapy in patients with non-small-cell lung cancer. J Clin Oncol 21 (7): 1285-92, 2003. [PUBMED Abstract]

Treatment Option Overview for SCLC

Treatment Option Overview for SCLC
·         Chemotherapy
·         Radiation Therapy
Chemotherapy and radiation therapy have been shown to improve survival for patients with small cell lung cancer (SCLC).
Chemotherapy
Chemotherapy improves the survival of patients with limited-stage disease (LD) or extensive-stage disease (ED), but it is curative in only a minority of patients.[1,2] Because patients with SCLC tend to develop distant metastases, localized forms of treatment, such as surgical resection or radiation therapy, rarely produce long-term survival.[3] With incorporation of current chemotherapy regimens into the treatment program, however, survival is prolonged, with at least a fourfold to fivefold improvement in median survival compared with patients who are given no therapy.
The combination of platinum and etoposide is the most widely used standard chemotherapeutic regimen.[4-6][Level of evidence: 1iiA] No consistent survival benefit has resulted from platinum versus nonplatinum combinations, increased dose intensity or dose density, altered mode of administration (e.g., alternating or sequential administration) of various chemotherapeutic agents, or maintenance chemotherapy.[7-12][Level of evidence: 1iiA]
Radiation Therapy
SCLC is highly radiosensitive and thoracic radiation therapy improves survival of patients with LD and ED tumors.[13-16][Level of evidence: 1iiA] Prophylactic cranial radiation prevents central nervous system recurrence and may improve the long-term survival of patients with good performance status who have responded to chemoradiation therapy [17-19][Level of evidence: 1iiA] and offers palliation of symptomatic metastatic disease.
Treatment for patients with limited-stage, extensive-stage, or recurrent SCLC is summarized in Table 1.
Table 1. Standard Treatment Options for Patients With SCLC
Stage
Standard Treatment Options
Limited-stage disease
Chemotherapy and radiation therapy
Combination chemotherapy alone
Surgery followed by chemotherapy or chemoradiation therapy
Prophylactic cranial irradiation
Extensive-stage disease
Combination chemotherapy
Prophylactic cranial irradiation
Recurrent disease
Chemotherapy
Palliative therapy
Despite treatment advances, the majority of patients with SCLC die of their tumor even with the best available therapy. Most of the improvements in the survival of patients with SCLC are attributable to clinical trials that have attempted to improve on the best available and most accepted therapy. Patient entry into such studies is highly desirable.
Information about ongoing clinical trials is available from the NCI Web site.
References

  1. Comis RL, Friedland DM, Good BC: Small-cell lung cancer: a perspective on the past and a preview of the future. Oncology (Huntingt) 12 (1 Suppl 2): 44-50, 1998. [PUBMED Abstract]
  2. Agra Y, Pelayo M, Sacristan M, et al.: Chemotherapy versus best supportive care for extensive small cell lung cancer. Cochrane Database Syst Rev (4): CD001990, 2003. [PUBMED Abstract]
  3. Prasad US, Naylor AR, Walker WS, et al.: Long term survival after pulmonary resection for small cell carcinoma of the lung. Thorax 44 (10): 784-7, 1989. [PUBMED Abstract]
  4. Johnson BE, Grayson J, Makuch RW, et al.: Ten-year survival of patients with small-cell lung cancer treated with combination chemotherapy with or without irradiation. J Clin Oncol 8 (3): 396-401, 1990. [PUBMED Abstract]
  5. Lassen U, Osterlind K, Hansen M, et al.: Long-term survival in small-cell lung cancer: posttreatment characteristics in patients surviving 5 to 18+ years--an analysis of 1,714 consecutive patients. J Clin Oncol 13 (5): 1215-20, 1995. [PUBMED Abstract]
  6. Fry WA, Menck HR, Winchester DP: The National Cancer Data Base report on lung cancer. Cancer 77 (9): 1947-55, 1996. [PUBMED Abstract]
  7. Ihde DC, Mulshine JL, Kramer BS, et al.: Prospective randomized comparison of high-dose and standard-dose etoposide and cisplatin chemotherapy in patients with extensive-stage small-cell lung cancer. J Clin Oncol 12 (10): 2022-34, 1994. [PUBMED Abstract]
  8. Arriagada R, Le Chevalier T, Pignon JP, et al.: Initial chemotherapeutic doses and survival in patients with limited small-cell lung cancer. N Engl J Med 329 (25): 1848-52, 1993. [PUBMED Abstract]
  9. Klasa RJ, Murray N, Coldman AJ: Dose-intensity meta-analysis of chemotherapy regimens in small-cell carcinoma of the lung. J Clin Oncol 9 (3): 499-508, 1991. [PUBMED Abstract]
  10. Elias AD, Ayash L, Frei E 3rd, et al.: Intensive combined modality therapy for limited-stage small-cell lung cancer. J Natl Cancer Inst 85 (7): 559-66, 1993. [PUBMED Abstract]
  11. Murray N, Livingston RB, Shepherd FA, et al.: Randomized study of CODE versus alternating CAV/EP for extensive-stage small-cell lung cancer: an Intergroup Study of the National Cancer Institute of Canada Clinical Trials Group and the Southwest Oncology Group. J Clin Oncol 17 (8): 2300-8, 1999. [PUBMED Abstract]
  12. Amarasena IU, Walters JA, Wood-Baker R, et al.: Platinum versus non-platinum chemotherapy regimens for small cell lung cancer. Cochrane Database Syst Rev (4): CD006849, 2008. [PUBMED Abstract]
  13. Pignon JP, Arriagada R, Ihde DC, et al.: A meta-analysis of thoracic radiotherapy for small-cell lung cancer. N Engl J Med 327 (23): 1618-24, 1992. [PUBMED Abstract]
  14. Warde P, Payne D: Does thoracic irradiation improve survival and local control in limited-stage small-cell carcinoma of the lung? A meta-analysis. J Clin Oncol 10 (6): 890-5, 1992. [PUBMED Abstract]
  15. Murray N, Coy P, Pater JL, et al.: Importance of timing for thoracic irradiation in the combined modality treatment of limited-stage small-cell lung cancer. The National Cancer Institute of Canada Clinical Trials Group. J Clin Oncol 11 (2): 336-44, 1993. [PUBMED Abstract]
  16. Slotman BJ, van Tinteren H, Praag JO, et al.: Use of thoracic radiotherapy for extensive stage small-cell lung cancer: a phase 3 randomised controlled trial. Lancet 385 (9962): 36-42, 2015. [PUBMED Abstract]
  17. Turrisi AT 3rd, Glover DJ: Thoracic radiotherapy variables: influence on local control in small cell lung cancer limited disease. Int J Radiat Oncol Biol Phys 19 (6): 1473-9, 1990. [PUBMED Abstract]
  18. Aupérin A, Arriagada R, Pignon JP, et al.: Prophylactic cranial irradiation for patients with small-cell lung cancer in complete remission. Prophylactic Cranial Irradiation Overview Collaborative Group. N Engl J Med 341 (7): 476-84, 1999. [PUBMED Abstract]
  19. Slotman B, Faivre-Finn C, Kramer G, et al.: Prophylactic cranial irradiation in extensive small-cell lung cancer. N Engl J Med 357 (7): 664-72, 2007. [PUBMED Abstract]

General Information About Small Cell Lung Cancer (SCLC)

General Information About Small Cell Lung Cancer (SCLC)
·         Incidence and Mortality
·         Clinical Features
·         Diagnosis
·         Prognosis and Survival
SCLC accounts for approximately 15% of bronchogenic carcinomas.
At the time of diagnosis, approximately 30% of patients with SCLC will have tumors confined to the hemithorax of origin, the mediastinum, or the supraclavicular lymph nodes. These patients are designated as having limited-stage disease (LD).[1] Patients with tumors that have spread beyond the supraclavicular areas are said to have extensive-stage disease (ED).
SCLC is more responsive to chemotherapy and radiation therapy than other cell types of lung cancer; however, a cure is difficult to achieve because SCLC has a greater tendency to be widely disseminated by the time of diagnosis.
Incidence and Mortality
The overall incidence and mortality rates of SCLC in the United States have decreased during the past few decades.[2]
Estimated new cases and deaths from lung cancer (SCLC and non-small cell lung cancer [NSCLC] combined) in the United States in 2015:[3]
·         New cases: 221,200.
·         Deaths: 158,040.
Clinical Features
Lung cancer may present with symptoms or be found incidentally on chest imaging. Symptoms and signs may result from the location of the primary local invasion or compression of adjacent thoracic structures, distant metastases, or paraneoplastic phenomena. The most common symptoms at presentation are worsening cough, shortness of breath, and dyspnea. Other presenting symptoms include the following:
·         Chest pain.
·         Hoarseness.
·         Malaise.
·         Anorexia.
·         Weight loss.
·         Hemoptysis.
Symptoms may result from local invasion or compression of adjacent thoracic structures, such as compression involving the esophagus causing dysphagia, compression involving the laryngeal nerves causing hoarseness, or compression involving the superior vena cava causing facial edema and distension of the superficial veins of the head and neck. Symptoms from distant metastases may also be present and include neurological defect or personality change from brain metastases or pain from bone metastases.
Infrequently, patients with SCLC may present with symptoms and signs of one of the following paraneoplastic syndromes:
·         Inappropriate antidiuretic hormone secretion.
·         Cushing syndrome from secretion of adrenocorticotropic hormone.
·         Paraneoplastic cerebellar degeneration.
·         Lambert-Eaton myasthenic syndrome.[2]
Physical examination may identify enlarged supraclavicular lymphadenopathy, pleural effusion or lobar collapse, unresolved pneumonia, or signs of associated disease such as chronic obstructive pulmonary disease.
Diagnosis
Treatment options for patients are determined by histology, stage, and general health and comorbidities of the patient. Investigations of patients with suspected SCLC focus on confirming the diagnosis and determining the extent of the disease.
The procedures used to determine the presence of cancer include the following:
·         History.
·         Physical examination.
·         Routine laboratory evaluations.
·         Chest x-ray.
·         Chest computed tomography scan with infusion of contrast material.
·         Biopsy.
Before a patient begins lung cancer treatment, an experienced lung cancer pathologist must review the pathologic material. This is critical because SCLC, which responds well to chemotherapy and is generally not treated surgically, can be confused on microscopic examination with NSCLC.[4] Immunohistochemistry and electron microscopy are invaluable techniques for diagnosis and subclassification, but most lung tumors can be classified by light microscopic criteria.
(Refer to the Staging Evaluation section in the Stage Information for SCLC section of this summary for more information about tests and procedures used for staging.)
Prognosis and Survival
Regardless of stage, the current prognosis for patients with SCLC is unsatisfactory despite improvements in diagnosis and therapy made during the past 25 years. Without treatment, SCLC has the most aggressive clinical course of any type of pulmonary tumor, with median survival from diagnosis of only 2 to 4 months. About 10% of the total population of SCLC patients remains free of disease during the 2 years from the start of therapy, which is the time period during which most relapses occur. Even these patients, however, are at risk of dying from lung cancer (both small and non-small cell types).[5] The overall survival at 5 years is 5% to 10%.[1,5-7]
An important prognostic factor for SCLC is the extent of disease. Patients with LD have a better prognosis than patients with ED. For patients with LD, median survival of 16 to 24 months and 5-year survivals of 14% with current forms of treatment have been reported.[1,6,8,9] Patients diagnosed with LD who smoke should be encouraged to stop smoking before undergoing combined-modality therapy because continued smoking may compromise survival.[10]
Improved long-term survival in patients with LD has been shown with combined-modality therapy.[9,11][Level of evidence: 1iiA] Although long-term survivors have been reported among patients who received either surgery or chemotherapy alone, chemotherapy combined with thoracic radiation therapy (TRT) is considered the standard of care.[12] Adding TRT increases absolute survival by approximately 5% over chemotherapy alone.[11,13] The optimal timing of TRT relative to chemotherapy has been evaluated in multiple trials and meta-analyses with the weight of evidence suggesting a small benefit to early TRT.[1,14,15][Level of evidence: 1iiA]
In patients with ED, median survival of 6 to 12 months is reported with currently available therapy, but long-term disease-free survival is rare.
Prophylactic cranial radiation prevents central nervous system recurrence and can improve survival in patients who have had a complete response to chemoradiation.[16,17][Level of evidence: 1iiA]
Thoracic radiation may also improve long-term outcomes for these patients.[18]
All patients with this type of cancer may appropriately be considered for inclusion in clinical trials at the time of diagnosis. Information about ongoing clinical trials is available from the NCI Web site.
References
1.     Murray N, Coy P, Pater JL, et al.: Importance of timing for thoracic irradiation in the combined modality treatment of limited-stage small-cell lung cancer. The National Cancer Institute of Canada Clinical Trials Group. J Clin Oncol 11 (2): 336-44, 1993. [PUBMED Abstract]
2.     Govindan R, Page N, Morgensztern D, et al.: Changing epidemiology of small-cell lung cancer in the United States over the last 30 years: analysis of the surveillance, epidemiologic, and end results database. J Clin Oncol 24 (28): 4539-44, 2006. [PUBMED Abstract]
3.     American Cancer Society: Cancer Facts and Figures 2015. Atlanta, Ga: American Cancer Society, 2015. Available online Exit Disclaimer. Last accessed January 7, 2015.
4.     Travis WD, Colby TV, Corrin B, et al.: Histological typing of lung and pleural tumours. 3rd ed. Berlin: Springer-Verlag, 1999.
5.     Johnson BE, Grayson J, Makuch RW, et al.: Ten-year survival of patients with small-cell lung cancer treated with combination chemotherapy with or without irradiation. J Clin Oncol 8 (3): 396-401, 1990. [PUBMED Abstract]
6.     Fry WA, Menck HR, Winchester DP: The National Cancer Data Base report on lung cancer. Cancer 77 (9): 1947-55, 1996. [PUBMED Abstract]
7.     Lassen U, Osterlind K, Hansen M, et al.: Long-term survival in small-cell lung cancer: posttreatment characteristics in patients surviving 5 to 18+ years--an analysis of 1,714 consecutive patients. J Clin Oncol 13 (5): 1215-20, 1995. [PUBMED Abstract]
8.     Turrisi AT 3rd, Kim K, Blum R, et al.: Twice-daily compared with once-daily thoracic radiotherapy in limited small-cell lung cancer treated concurrently with cisplatin and etoposide. N Engl J Med 340 (4): 265-71, 1999. [PUBMED Abstract]
9.     Jänne PA, Freidlin B, Saxman S, et al.: Twenty-five years of clinical research for patients with limited-stage small cell lung carcinoma in North America. Cancer 95 (7): 1528-38, 2002. [PUBMED Abstract]
10.                       Videtic GM, Stitt LW, Dar AR, et al.: Continued cigarette smoking by patients receiving concurrent chemoradiotherapy for limited-stage small-cell lung cancer is associated with decreased survival. J Clin Oncol 21 (8): 1544-9, 2003. [PUBMED Abstract]
11.                       Pignon JP, Arriagada R, Ihde DC, et al.: A meta-analysis of thoracic radiotherapy for small-cell lung cancer. N Engl J Med 327 (23): 1618-24, 1992. [PUBMED Abstract]
12.                       Chandra V, Allen MS, Nichols FC 3rd, et al.: The role of pulmonary resection in small cell lung cancer. Mayo Clin Proc 81 (5): 619-24, 2006. [PUBMED Abstract]
13.                       Warde P, Payne D: Does thoracic irradiation improve survival and local control in limited-stage small-cell carcinoma of the lung? A meta-analysis. J Clin Oncol 10 (6): 890-5, 1992. [PUBMED Abstract]
14.                       Perry MC, Eaton WL, Propert KJ, et al.: Chemotherapy with or without radiation therapy in limited small-cell carcinoma of the lung. N Engl J Med 316 (15): 912-8, 1987. [PUBMED Abstract]
15.                       Takada M, Fukuoka M, Kawahara M, et al.: Phase III study of concurrent versus sequential thoracic radiotherapy in combination with cisplatin and etoposide for limited-stage small-cell lung cancer: results of the Japan Clinical Oncology Group Study 9104. J Clin Oncol 20 (14): 3054-60, 2002. [PUBMED Abstract]
16.                       Aupérin A, Arriagada R, Pignon JP, et al.: Prophylactic cranial irradiation for patients with small-cell lung cancer in complete remission. Prophylactic Cranial Irradiation Overview Collaborative Group. N Engl J Med 341 (7): 476-84, 1999. [PUBMED Abstract]
17.                       Slotman B, Faivre-Finn C, Kramer G, et al.: Prophylactic cranial irradiation in extensive small-cell lung cancer. N Engl J Med 357 (7): 664-72, 2007. [PUBMED Abstract]
18.                       Slotman BJ, van Tinteren H, Praag JO, et al.: Use of thoracic radiotherapy for extensive stage small-cell lung cancer: a phase 3 randomised controlled trial. Lancet 385 (9962): 36-42, 2015. [PUBMED Abstract]